National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Calcium signalling in astrocytes under physiological and pathological conditions
Svatoňová, Petra ; Anděrová, Miroslava (advisor) ; Kolář, David (referee)
Calcium signalling in astrocytes represents an important component, which enables proper neuronal functioning under physiological conditions. Alterations in Ca2+ signalling, accompanied by an increase in intracellular calcium levels is a hallmark for numerous pathological states of central nervous system, such as traumatic and ischemic brain/spinal cord injuries, epilepsy as well as neurodegenerative diseases, such as Alzheimer's disease and psychiatric disorders, such as schizophrenia. The research analyzing the molecular components of astrocytic Ca2+ signalling can help us understand the control mechanisms used in calcium signalling and thus be greatly beneficial for further therapeutic research. Powered by TCPDF (www.tcpdf.org)
Calcium signalling in astrocytes under physiological and pathological conditions
Svatoňová, Petra ; Anděrová, Miroslava (advisor) ; Kolář, David (referee)
Calcium signalling in astrocytes represents an important component, which enables proper neuronal functioning under physiological conditions. Alterations in Ca2+ signalling, accompanied by an increase in intracellular calcium levels is a hallmark for numerous pathological states of central nervous system, such as traumatic and ischemic brain/spinal cord injuries, epilepsy as well as neurodegenerative diseases, such as Alzheimer's disease and psychiatric disorders, such as schizophrenia. The research analyzing the molecular components of astrocytic Ca2+ signalling can help us understand the control mechanisms used in calcium signalling and thus be greatly beneficial for further therapeutic research. Powered by TCPDF (www.tcpdf.org)
Membrane properties of NG2 glia in CNS
Knotek, Tomáš ; Anděrová, Miroslava (advisor) ; Hrčka Krausová, Barbora (referee)
NG2 glia represent a new type of glial cells in central nervous system, which does not belong to astrocytes, oligodendrocyte or microglia. and their most frequent marker is chondroitine sulphate proteoglycan NG2. These cells keep their proliferation ability in adult brain and it is generally accepted that they can differentiate into oligodendrocytes. This thesis summarize the current knowledge about membrane properties of NG2 glia, namely expression of numerous types of ion channels and ionotropic and metabotropic receptor on their membrane. NG2 glia express outwardly and inwardly rectifying K+ channels, Ca2+ activated K+ channels and two-pore domain K+ channels. Interestingly, they also express voltage gated Na+ channels, L, T, P/Q and N type Ca2+ channels and voltage gated Cl- channels. Furthermore, nonspecific cationic channels, such as HCN and TRP, were identified in NG2 glia and they express Na+ /Ca2+ exchanger at high level. There are also ionotropic and metabotropic glutamate and GABA receptors on NG2 glia membrane, together with nicotinic and muscarinic receptors, adrenergic and glycine receptors, metabotropic and ionotropic purinergic receptors, receptors for serotonine, dopamine and histamine. Ion channels and receptors in NG2 glia play an important role in their proliferation,...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.